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INTRODUCTION: 

This investigation, supported by NASA Research Grant Number 
NGR-03-001-013, has been concerned with the development of a Green's 

function approach to the vibration problem of thin spherical shell 
segments. The class of problems considered has been limited by the 
following assumptions. 

1. The vibration is undamped. 

2. The vibration is of small amplitude and hence, considered 
linear. 

3. The shell is thin, permitting use of a simplified elastic 

law for the flexure of thin shells, in which the thickness-to- 

radius ratio is ignored when compared with unity. 

It should be noted, however, that the approach, while subject to 

the above restrictions, is adaptable to vibration analysis of spherical 

segments with arbitrary boundary conditions prescribed along the segment 
edge. The edge, in turn, may be defined by an arbitrary closed contour 

in a spherical surface. Thus a generality is achieved in both the shape 

and boundary conditions of segment. 
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GREEN'S FUNCZION l!WMUUTION: 

The vibration problem to be considered is first replaced by an equiva- 

lent static problem. A static load proportional to displacement is substitu- 

ted for the inertial loading of the vibrating shell. Additionally, the arti- 
fice of an elastic foundation is introduced such that the foundation reaction 

is proportionalto displacement but in opposite sense. Thus, if the applied 

load is proportional to displacement, then also the net load on the shell 

(applied load together with foundation reaction) adheres to this proportion- 

ality. This manner of reacting applied loads permits a simplifying symmetry 

for the required Green's functions and yet does not disturb the proportion- 

ality of load to displacement which is necessary to simulate the vibration 

problem. 

The relationship between the posed vibration problem and the equivalent 

static problem may be expressed symbolically: 

(a) For the vibration problem 

2 = pI co2 u' 

where, 

c = inertial shell force per unit surface area 

p, = shell mass per unit surface area 

w = natural angular frequency 

i? = displacement vector of the middle surface 

(b) For the shell on the elastic foundation 

‘s = r ’ $-kc = k) ;;: 
where 

s' = net load on shell (per unit surface area) 

x = proportionality factor between applied load and displacement 

k = foundation modulus 



Consequently,if (i - k) is made equal to ~1 w*, the static problem 

is equivalent to the vibration problem. 

The equivalent static problem is next formulated in terms of fundamental 

influence functions (Green's function). In brief, if the displacement 

and stress fields are known for a unit load (and unit couple) applied to 

a point on the canplete sphere (on an elastic foundation), then through 

superposition the required relationships may be written satisfying 

boundary conditions (specified along a given contour) as well as the 

condition that the applied load be proportional to displacement. 

For condensed notation, let: 

Ab,n) be the displacement vector at point m, (on the sphere) due 

to a base load vector applied at point n on the sphere. 

B(s,n) be the boundary condition "residual" vector* (four 

dimensional) at point s on the contour, C, due to a unit 

load vector at point n. 

Cbd be the boundary condition residual vector at point s on 
-He 

the contour C due to corrective load system base vector 

(four dimensional) at point t on the contour, C. 

Db,t> be the displacement vector at point m on the sphere due to 

the corrective load base vector at point t on the contour, C. 

$ b> be the applied load (intensity) vector at point n. 

* b> be the displacement vector at point m. 

at> be the contour corrective load system at point t on the 

contour, C. 
Then employing superposition, the specified boundary conditions along 

C are satisfied if the boundary condition "residuals" vanish; that is, 

JsJ B(s,n)$(n) do + Jc C(s,t) z(t) ds = 0 (1) 

* The boundary condition residuals refer to deviations from four specified 
boundary conditions along the contour, C. 

** The corrective load vector includes four components of a line load 
system (three force components and one force-couple) applied to the 
sphere along the contour, C. 
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The applied load-displacement relationship is also obtained from super- 

position, 

r [ A(m,n) e(n) do + 1 D(m,t) t(t) ds = u(m) 
d s" ‘C 

(2) 

The function 2(t) may be eliminated between equations (1) and (2) (by 
means of inverse operators) , and the resulting equation could be symbolized by: 

Js[ Gb,n) ?i(n) do = %d (3). L 

Then for c(n) = $ i?(n), equation (3) becomes 

JJ G(m,n) 'u(n) do = X e(m) 
S 

(4) 

which defines the eigenvalue problem for the general static equivalent 

problem, and hence, for the original vibration problem. 

A more detailed discussion of the Green's function formulation appears 
in Appendix I, in which a free edge boundary condition is used for illustra- 

tive purposes and formulations for other boundary conditions are indicated. 

FUNDAMENTAL PROBLEMS 

The required Green's functions, as defined in the foregoing discussion 

consist of displacementsand stress resultants resulting from a unit force (or 

force couple) applied to the complete spherical shell on an elastic foundation. 
We now argue that only two fundamental problems require solution to provide 

the necessary Green's functions. 

The two fundamental problems are defined by the application to the 
spherical shell of: (1) a unit normal load and (2) a unit tangential load. 

In each problem both displacements and stress resultants are sought. To ob- 

tain the Green's functions in which the stimulus is a force, such a force may 

be resolved into components, normal and tangential to the sphere, permitting 

direct use of fundamental problems (1) and (2). For those Green's functions 
in which the stimulus is a unit couple applied to the sphere, Betti's recripro- 

cal theorem may be employed in conjunction with problems (1) and (2). The 

3 



rotation of a tangent to the midsurface of the shell due to a unit 

load may be equated to a displacement due to a unit force couple. 

We now consider separately the two fundamental problems. 

FUNDAMEN!NLPROBLD4 I 

The first fundamental problem is that associated with a spherical shell 

on an elastic foundation subjected to an applied unit normal load. Select- 

ing the polar axis such that the unit load acts at the pole (pl = 0), the 

problem possesses polar symmetry. Eh@loying the notation and sign conventions 
used by Timoshenko in "Theory of Plates and Shells", the stress resultants 

for the polar symmetric problem are as they appear in the sketch below: 

Equilibrium of the element leads to: 

(N#r)' - Ne a co6 ld - (Qgro) = -r aY 

(Nat?) + Ne a sin @ + <Qgro) = -r aZ 

Qra = 
ld $,r) O - Mea cos @ 

where ( )O denotes a(.. 
d$ ' 

/ 
(5 a-c> 
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For the symmetric problem, stress-strain and strain-displacement 
relationships may be combined to obtain the elastic law for the thin 

spherical shell: 

Ng= a 
g (A w) 

C 
+ v(v cot $3 - w) 1 

K 
%'a c (v cot $4 - w) + v(vO - w) 1 (6 a-d) 

Me = x cot fa + vx 
1 

where D = Eh3 

12(1-v*) 
J K= Eh 

(l-v*) 
, x=(v+/) v = Poisson's ratio and 

w, v are displacement components. 

The elastic foundation reaction loads are: 

Y = -kv , Z = -kw (& is the foundation modulus.) (7) 

Some manipulation is required to obtain the governing differential equa- 
tion for Problem I. We start by solving equations (6 a) and (6b) for the n 
quantities, (v-- w) and (v cot fl - w): 

- u Ne ] (8 a) 

(v cot g - w) = - -UN # 1 
Differentiating the latter equation, we obtain: 

v"cot gl 1 O -v- -w = a 0 0 

sin*@ K(l-u*) [ % 
-UN Ib 1 I 

03 b) 

(8 4 



El&ainating v" and w from the three equations (8 a-c) yields: 

(v+wO)= a 
K( l-v*) 

N; + (1 + v) (4 - Ne) cot # 
3 

or 

K(+*)X = EN; - N; + (1 + v) (Na - Ne, cot #] 
(9) 

Next we consider the equilibrium of the spherical shell that lies above 

a latitudinal plane, # equals a constant. (We consider the pole, # = 0, to 

be at the top of the sphere). The forces acting upon this free body include 

the edge forces (&a , $), the foundation reaction forces over the surface, 

and the applied unit load at the pole. The resulting equilibrium equation 

when solved for N# yields: 

Upon 

cot gl - 1 ka 

2x a sin*@ 
+- 

J sin*@ o 

substituting this equation into 

No = - Qgo+ ' 
23-c a sin*@ 

When equations (10 

reduces to: 

v sin g + w cos pi 1 sin # d# (10 a) 

(5 b) where Z = -kw we obtain: 

-I ka @ -- JII sin*@ o 
v sin Z + w co6 $ 1 sin er d@ + kaw (10 b) 

a, b) are substituted into equation (9) the latter 

K (1-v2) X = L ($) + vQ@ + (l+v) kav - kaw" (11) 

where the operator L is defined by: 

L ( ) = ( )0°+ ( )O cot fi - ( ) cot*@ 

We now assume that the dispiacement v is small in comparison with w" 

since the rotation of shell is a primary consequence of bending in the vicin- 

ity of the load while the displacement v is a secondary effect. Then a 

function k defined as, 

ii +-@$] 
v+w 
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is essentially equal to k and may be treated as a constant over small 
ranges in pl. 

!l!he displacement terms on the right side of equation (11) are then: 

(l+v) kav - kaw" = ka [(2+v)kv - (v+wy)] 

= - xa*X 

Hence equation (11) becomes: 

p (l-v*) + Xx21 X = L (Q#, + vQg (12 a> 

Now substituting the elastic law equations (6 c, d) into the third 

equilibrium equation (5 c) we obtain an expression for Qti in terms of X: 

-;* Q@ = L (x) - vx (12 b) 

Finally, X may be eliminated between (12 a) and (12 b) to obtain the 
governing fourth order differential equation: 

LL($)+4x4Q =0 
@ (13) 

where: 
4R4 = (l-v21 ", P - v*a 

D h* CY" 
z=- 12a2 

Equation (13) may be factored to yield two second order differential equations 

whose solutions satisfy (13) 

L($) "2ibc2$=0 (14) 
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A substitution for the dependent variable, 

reduces equations (14) to a simpler form: 

Considering a boundary to be defined at pr = go , a new independent 

variable ,$ may be introduced such that: 

Fxpanding cot*@ in a Talyor series about go we obtain, 

cot$ 
cot plo 

= cot$o - 2 - 
sin2go 

f# + . . . 

Retaining the first two terms* this may be substituted into equation 

(15) to give: 

O" Z = (A, + A1 9) z 

where, 

AO 
= i (3 cot2!ao - 2: *ix*) 

& 
cot go 

Al=- - sin2flo 

We now attempt a solution of the form 

Z =exp a, [ $+ a2q2 + . . . 1 
which when substituted into (16) leads to: 

(al + 2 a2$ + . ..) 2 + (*a2 + 65' + . ..> = A0 + Al$ 

(15) 

* 
The justification for retention of only two terms is that the solution 
of the equation is to be applied for only small values of f. 
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Upon equating coefficients of corresponding powers in 4 we obtain: 

2 
al + 2a2 = A0 (17) 

4al a2 + 6a3 = Al 

Consistant with the truncated Talyor series for cot* pi, we retain 

only two terms in the series for log Z. Then the complex numbers al and a2 

may be obtained through the solution of equations (17). We now let 

(y + a2 $1 $ = ( 2 5 + 7 i) JI= 

If only those solutions with negative real exponents are retained, 

the required decay behavior of functions of p, is assured. The solution 

for Qg is then expressible as: 

[: Cl co6 Tj 6 + C2 sin ri JI ] (18) 

which solution is valid for small Jr. 

Ekuploying the differential equations (14) in Q#, in conjunction 

with equation (12a) (that expresses X in terms of Q#) we obtain: 

x= 
a* e-!3 

4 D(4 y e + v2)dz K v cl -*ye*C sin T *J (19) 

Expressions (6a-d), (8a,b), and (lOa,b) together with the solutions 

;(W and (19) P rovide the basis for a quasi-nuurzric integration of the 

governing differential equations for the First Fundamental Problem. 

Functions of 6 assume the general form: 

f=&& 
e-5 OI [ (fl + f2X) c= W + cf3 + f4.+n M] 

in which it should be noted 5 and 'J are linear functions of Ib: 

that is, 
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t= E1+~*$.~drl=91+~if 

Then the derivative of f becomes: 

g=f”=$& e -0 r (g, + 632 $1 cos. n* + k, + 654 $1 sin Tq 
(20) 

where 

Ql = - (51 +; cot $5,) fl + f2 + q f 
13 

g2=- .52-2sin2@ ( l ) fl - (sl+ $ cot go) f2 + n2f3 + Ill f4 

0 

and with corresponding expressions for g 
3 

and g4. 

To achieve a step-wise integration, we assume at the outset an appro- 

priate start in the form of a solution near the apex of the sphere. (This 

is subsequently discussed). The operations to be performed at each stage 

follow: 

1. Starting at @ = go, with all functions known for @ less than or 

equal to ~5~~ the constants Cl and C2 are evaluated from expressions (18) 

and (19). Also, the value of&? and the constants,cl, f2, 71, '$ are eval- 

uated (employing equation 17). 

2. The variable $ is considered to range from 0 to an appropriate small 

value !I!?: 
At the end of this range; that is, for $ = A@ , the functions Qfl 

and X are evaluated, again from (18) and (19). 

3. Displacement and stress resultant functions are evaluated at the 

beginning of each step (and at selected intermediate points for larger 

steps). 
4. The starting value # 

Operations (1) through (E) 

is next incremented by A#. 

are repeated successively until functions 

have decayed sufficiently. It may be verified that in matching Q# 

and X at the boundaries of each step in # ,sll functions of @ will 

likewise match. 

Operation (3) above deserves further discussion. The sub-operations 

to obtain displacements and stress resultants at each stage are outlined 

below: 

(a) Employing relations (lOa, b), the membrane forces N ti and 
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N0 may be obtained. However, initially the definite integral, 

containing z and w must be approximsted in range from plo 
to do + &, by means of extrapolated values of 1 and 1 . (The 
definite integral is evaluated most conveniently by nmerical 

quadraturesJ The error introduced by approximating 1 and x in 

range of the new increment of @ is mpall as this increment, L&J, is 

small. 

(b) Eliminating 4~ between (6a) and (6b), we have the expression for v, 

which may be integrated numerically to obtain 1 . 

(c) Since X is now known, and also 
0 

X v+w =- 
a 

w may be found by numerical integration. 

ia Th en with improved values for both v and w steps (a), (b) 

and (c) may be repeated. 
(e) The bending moments are obtainable directly from moment-curvature 

relationships (6c, d). 
In the above operations a sub-routine for differentiation based upon 

expression (20) would be used whenever differentiation is indicated. 

Turning attention now to the solution near the pole (# = 0), the 
differential equations (14) may be simplified, with the introduction 
of only small error, by considering only the first term in a Iaurent 

series for cot @: 

I.L$ + 21 be2e, = 0 

becomes: 

(21) 

Letting x = cpfl in equations (21) and combining appropriate conjugate 

complex solutions, we obtain (ref. 1) 
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&td 
= B1, ker 'x + B2 kei 'x (Kelvin functions) 

The boundary conditions are then enforced as # approaches the 

singular point # = 0 , to obtain: 

be 
Q = 
' .&na 

[ Ker 'x - -%- 
2x2 

kei 'x] 

x= -a kei 'x 
2znDK 

Ignoring v near the pole and integrating equation (23) we find: 

a2 w=.. 
c-2 

kei x 

(22) 

(23) 

(24) 

(If the radius-to-thickness ratio is allowed to become very large, 

this solution reduces to the deflection of a plate on an elastic foundation 

acted upon by unit concentrated normal load) 

tiploying equations (22), (23), (24) in expressions (6a - d), 

(8% b) and (1% b), a starting solution is provided for the stepwise 

integration outlined above. 
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Fundamental Problem II - 

The development of the governing differential equations (in terms of dis- 

placements) for the unit tangential load, follows a pattern similar in some 

respects to that for Fundamental Problem I. 

The equilibrium of the element leads to three equilibrium equations, 

expressed in terms of stress resultants. Substitution of the elastic law, 

yields three equations in the displacements u, 6, and ij. (ref. 1 ) These 

may be further simplified by recognizing that a solution of the form: 

ii = u (b) sin 8 

i; = v (4) CO6 8 

w = w ($6) cos 8 (25) 

is consistent with the singuarity associated with the unit tangent load at 

d = 0, which load is contained in the meridianal plane, 0 = 0. 

Upon introducing expressions (25) into the first two of the equilibrium 

equations (the latitudinal and meridianal force summations) we obtain: 

(1 + Q) C + (uoo sin 4 + u" cos 6) - u{ -L - 
sin24 

9 (1 - cot2b) sin jA } 

1+v 3-v B2 VO’T v cot $4 + (1 f v> w 1 (26 a> 

- CY [: woo + w” cot4 + li(2-+>3= j3usinfd 
sin )d 

13 



(l+ cj) [+ u" - + u cot d + voo sin b + v" cos # (26 b) 

- +b (cos2 JA + a sin2 d f' +) - (1 + v) w" sj.n "1 

C 
. 

+ c! w” sin b + woo cos b 3 -I- w o 2 - - 
( > 

sin b + 2w- = cos fd -I 

sin*8 si,2s J 

$ v sin b 

If equation (26a) is differentiated with respect to b, multiplied by 

sin b and then added to (26b), we succeed in eliminating w and obtain upon 

reduction: 

7 00 - 1p cot # - p7 = 0 

where: 

7= (u sin 4) o + v 

(27) 

2r3 
P= (1 - v)(l + CY) -2 
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Equation (27) can be further reduced by a substitution for the independent 
variable. If we let 

s= l- cos 4 ( )‘=a(_) 
ds 

then equation (27) becomes, 

(2s - s2) 7" - p7 = 0 (28) 

Before attending to the solution of this equation in 1, we proceed to 

eliminate v.for equation (268) by introducing 2 Then we obtain: 

N” sin d) - (1 + V)(U sin 4) - * (u sin 4) = 
(29) 

1+v 
2 c To - T cot 4 7 A. 27 cot d + & H (w) - (1 + vJw 

where: 

H( ) = ( ),“ + ( )" cot 4 + 

This may be simplified if the new independent variable s is introduced 
along with the dependendent variables: 

y = u sin2 6 , x = w sin 4 

Then equation (29) becomes: 

(2s - s")y" + (1 - v - &)Y =Lp (2s + s2) 7' 

(30) 
+ + (1 - S)T + + [(2s - s2) x" - 23 - (1 + v> x 

Since from the Ektti reciprocal theorem x in Fundsmental problem II is 
equal to 9 in Fundamental Problem I, we may consider x (and hence X) known as 

we approach a solution to equations (28) and (30). The series solution of the 
differential equation (28), in 7, (since the roots of the indicial equation 

are: r = 0, 1) may take the form: 

T= & logs) sn 
n 
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Substitution of this solution into equation 

of like powers of = (separately for the log and 

recurrence relations: 

Jl an = J2 6 1 

Jl an = J2 an-l + ‘3 an +J; 4 n-l 

Where 

Jl = 2n (n-l) 

J2 = (n-l)(n-2) + p 

J3 = -2(2n-1) 

J4 = 2n-3 

A similar form of solution for y in equation (30) leads to additional 

recurrence formula. IIf we use 

Y = z <b, + sn Log s) sn 

x= L dn sn 

Then: 

(28) and equating coefficients 

non-log'terms) leads to two 

(31 a, b) 

Jl bn - = J5 gn 1 + J6 an 1 + J7 Gn 2 

Jl bn = J5 bn 1+ J3 Gn + J4 sn 1 

+ J6 an 1 + J 7 an-2 + 58 gn 1 + J 9 9-2 

+ JIO dn + Jll dn-l 

where: 

J5 f (n-l)(n-2) - (l-v- 8 ) 
l+Cr 

(32 a9 b) 
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J6 = (1 + v)(n-1) + v 

J7 = -(n-2) A+ - J--$l 

J8 =1+v 

l+v -- Jg= 2 

ct 
Jlo = l+a, 2n (n-l) 

Jll = * [(n-l)(n-2) - 23 - (l+v) 

F'rom a consideration of the first few orders of the recurrence relations 

(31 a, b) and (32 a, b), it may be verified that: 

a., and 6, are zero 

The constants al , al , 6, , bl are arbitrary. All other coefficients are 
expressible in terms of these four arbitrary constants. 

To evalute these constants by means of boundary conditions it is first 

necessary to express v in a comparable series form: 

-1 
v= 1 (cn + cn Log s) s” 

Then from the definition of T, 

V=T - w sin 4) 

and hence upon substitution of series solutions. 

2~~ = GnBl + 2;. - 'a n-l - (2n + 1) Cn + 1 + (n-1)f& 

(33 a9 b) 
2cn = cnwl + "an - anBl - (2n + 1) bn + 1 + (n - 1) bn 

- 25, + 1 + bn 

17 
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From which the coefficients cn and cn are expressible in terms of the 

arbitrary constants $, al) 6,, and bl. 

To complete the solution to Fundsmental Problem II four boundary conditions 

are required. Care must be used in considering boundary conditions near the 

singularity, 4 =/ 0, as the simplified definition of strain (implicit in the 

elastic law of shell) loses physical significance. To define extensional strain 

as the change in length divided by the original length produces anomalies when 

strains become very large. For this reason, boundary conditions will be enforc- 

ed near the-pole, but not at the pole. Considering the equilibrium of a free 

body consisting of a disc of radius & containing the pole, we obtain two 

equations: Suunning forces in tangential direction of 0 = 0 leads to: 

2n 
1 =a 

l [ 
N 

4 
8 sin 8 - Ne cos 0 1 sin c de (344 

Moment equilibrium about the axis, 8 = $ yields: 

2Yc 
o= 

J c 
(Q asinc- 

6 
Mb + Nb a sin2 6) co6 0 

0 

(34b) 

+ M 
B 

8 sin 8 
3 

de 

mloying the elastic law and the lower order terms of the series solutions 

for u and v (w may be ignored in region near the pole as may be verified from 

the solution near the apex of Problem I), we find from boundary conditions 

(34 a, b): 

2 = q-i+!.) f + i;, -[3+ C2 + w Cl ] 6 log s (35 a) 

and: 
2 b. o=s +b 1 + 2co - 2s1 

(35 b) 

where s= 1 - cos e. For numerical computation 2 is taken as suitably small, 

but not so small that strains become excessive. 

Two additional boundary conditions are required. For these we resolve 

the original Fundamental Problem II into symmetric and anti-symmetric component 
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problems illustrated below: 

At the equator, corresponding'to 8 = 1 (or 4 = 90") we have the respective 
boundary conditions: 

For the symmetric problem: 

T= 0 
N. # =o 

ats=l 

For the anti-symmetric problem: 

Y =o 
N =0 

d 
ats=l 

(36) 

(37) 

Associated with each set of equatorial boundary conditions (36) and (37), 
are the boundary conditions near the apex, (35 a, b) (however, with concentrated 

load equal to l/2). Consequently each component problem msy now be solved 
independently as four suitable boundary conditions are specified (for each) 

leading to two sets of simultaneous equations in the four arbitrary constants. 

(It may be verified by the ratio test thatthe series are convergent at s = 1). 
Finally, the desired solution to the Fundsmental Problem II is to be found 

in the superposition of the two component solutions. 
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The Green's function approach to the vibration analysis in a specific 

problem entails a number of computational operations. In the discussion of 

these operations it is convenient to consider separately : (1) the mechanics 

of solution of the integral equations in which the Green's functions are 

assumed known and (2) the computational steps in obtaining the required Green's 

functions. 

Solution of Integral Equations 

The governing integral equations (1) and (2) are more explicitly presented 

in Appendix I as equations (la) and (2a). If these equations, are replaced 

by finite difference approximations to the equations, the integral operators 

become rectangular matrices and the functions Us, (1cy, and Li become column 

matrices (or %ectorsU). 

Let the surface S (enclosed by the contour C) be subdivided into z elements, 

th the n element denoted by Aon. 

Also let the contour C be subdivided into g segments, with ASm denoting 

the mth segment. 

The integrals of equation (la) may then be approximated by mechanical 

quadratures: for example, 

where B i6 (m, n) is B. th 
16 

evaluated at the central points of the m segment 

on contour C and the n th surface element. 

ci&n) is the central value of qS for surface element Aon. 

Next let the symbol [B] denote a k4 by 3N rectangular matrix whose 

element in row [4(m-1) + i] and column [3(n-1) + B] is BiB(m, n) Ao . Also 
n 

let&be a column matrix whose element in row [3(n-1) + 6-j is Q(n). Then: 



N 

c Big h-d s(n) Aan = CBI 2 
n=l 

We define other rectangular and column matrices correspondingly to 

represent the other integral operators and functions appearing in equations 

(la) and (2a): 

Matrix 

WI 

CA1 

IDI 

e 

A 
u 

Element 

Cijbb P)As P 

A,&-, n)ao, 

Dcyj(4, P)Asp 

Lj(P) 

U,(r) 

Row 

4(m-1) + i 

3(4-l) + fX 

3(*-l) + c# 

4(P-1) + j 

3(P-1) + cy 

ColUmtl 

4(P-1) + J 

3b1) + 6 

4(P-1) + j 

The mechanical quadrature approximation to equations (la) and (2a) is then: 

[C] ? = 0 

[D]? = u 

(lb) 

(2b) 

If [C-l] denotes the inverse of matrix [C], then from equation (lb): 

e= -CC-‘1 CBI : (3b) 
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This may be substituted into equation (2b) to obtain: 

[A]: - [D][C-'1 [B] ;; = t 

or 

{[A’ -CD1 cfll ‘PI} ; = : 

Finally,if ; = x 1 e, we may write: 

CG’ -= = Ai? 

(4b) 

(5-N 

where 

CGI = (CA’ -CD’ CC”1 [Bl) 

The eigenvalue problem symbolized by equation (5b) may be solved 

conveniently by the Vianello-Stadola iterative method. Upon obtaining each 

eigenvalue and mode shape, the matrix [G] is then purified of that mode shape 

chsracteristic such that higher order modes and eigenvalues will emerge, 

Development of the Green's Functions: 

To facilitate the development of specific Green's function, two spherical 

polar coordinate systems are introduced, one fixed in space to serve as a reference, 

the other oriented with respect to two selected points on the sphere. The fixed 

coordinates, # and 8 serve to locate sample points for numerical integration 

and are used in defining the contour C enclosing the spherical segment under 

consideration. The %elativeW coordinate system, as the second system may be 

termed, has variables denoted by 3 and $. The pole, $ = 0 is located at a 

"stimulus" point defined as a sample point at which a unit force or unit couple 
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is considered to be applied. Also the meridisnal plane, 9 = 0, is oriented 

to contain a "respnse" point, that is, a sample point at which a displacement 

or stress resultant is sought. 

The Green's functions (or for computationsal purposes, the elements 

of the influence matrices) are w- respo rises at one point on the sphere due to unit 

stimuli at a second point, with the location of points and surface vector 

(or tensor) components expressed with respect to the fixed reterence frame. 

However, the solutions to the Fundamental Problems I and II, (which provide the 

basis for the Green’s functions) are expressed in terms of the relative coordinate 

system. Then vector (or tensor) transformations of components are required 

at the stimulus point and again at the response point. (The details of these 

transformations together with the required spherical surface geometry are 

contained in Appendix II). 

As a demonstration example, consider the develoment of the Green's functions 

for a shell segment with fixed (built-in) supports. The residuals in this case 

would be the displacements w, v, u, and the rotation respectively 

Rlf R2, R3, R4,). 

The required displacement functions from the solutions of the Fundamental 

Problems I and II are denoted by the following: 

For Fundamental Problem I, let 

"1 = w $1 

w; = w o (21 
wy = w O0 (2) 

vl = v 5) r 
5 = vO($) 
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For Fundamental Problem II, let 

"2 
= v (bi", ko) 

"2 = u ( 3 , t=; ) 

Introducing the notation: 

Y= the angle between the tangent to the meridian circle at the stimulus 

point toward the pole and the tangent to a great circle at the 

stimulus point toward the response point. 

6 = similar to y, with the roles of stimulus point and response point 

interchanged. 

We obtain from spherical geometry (Appendix II)(end from Eetti's reciprocal 

theorem) the following expressions for the Green's functions: AcvpJ BiFJ C.., 
iJ 

and Dorj (defined earlier)* (Functions of 8, g, for stimulus point end 

6, 0, for response point): 

Al1 = w1 

AU = -vl cos y 

Al3 = -vl sin y 

A2l = -vl cos 6 

A22 = -"2 cos y cos 6 -u2 sin y sin 6 

A23 = -v2 sin v cos 6 + u2 cos v sin 6 

A3l = v1 sin 6 

A32 = v2 cos y sin 6 - u2 Sin y cos 6 

A33 = 
v2 sin y sin 6 + u2 cos ycos 6 

*(For sign conventions see Appendix II) 
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B 
a3 

= A 
crfj 

for (Y = 1, 2, 3, and B = 1, 2, 3 also, 

B41 = -w; cos 6 

B42 = v; CO6 y cos 6 - v1 sin y sin 6 csc 1 

B43 = vi sin y sin 6 + v1 CO6 y sin g csc a 

% = Bip i = 1, 2, 3, 4, and g = 1, 2, 3 

also, 

Cl4 = -w; cos y 
A 

'24 = vi cos y co6 6 - v1 sin y sin 6 CBC + 

c34 = -VI cos y sin tj - v1 sin y cos 6 csc f 

D 
4 

= B 
jQI 

from the reciprocal theorem. 

The quantities 2, y, 6, are functions of 3, s, 4, 8, and are computed 

from relationships developed in Appendix II. 

When the response and stimulus points are coincident the above expressions 

do not apply but rather singular values of displacements or residuals are used, 

which values are found directly from the solutions of the Fundamental Problems 

or from an appropriate limiting process, with statically equivalent distributed 

loads. 

The mechanics in obtaining the Green's functions for other boundary conditions 

would follow a similar pattern. 
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APpmIx1 FORMULATION XCR GREEN'S FUNCTION SOLUTION 

The natural frequencies and mode shapes are sought for a segment of 

a spherical shell subject to specified botiary conditions. As indicated. 

in the report text, a substitute static equivalent problem is instead con- 

sidered, in which a canplete spherical shell on an elastic foundation is 

loaded over that portion of.the spherical surface enclosed by a contour C 

(corresponding to the edge of the segment) and loaded by line loads and 

moments, along the contour C. The conditions to be met in order to make 

the two problems equivalent are (1) the static distributed'surface force 

must be proportional to displacement (2) the desired boundary conditions 

must be enforced along the contour C. 

To simplify the present discussion, we consider the case of a free 

boundary (along dontour C); that is, the stress resultants (per unit length) 

along the edge must be zero. According to Kirchhoff's formulation, Vn, Nn, 

S nt' and Mn must each vanish at the boundary, where referring to the sketches, 

edq e --.--. 

Forces/unit length Force couples/unit length 

Nn & Nnt are membrane stress resultants 

M nt is the twisting moment 

vn = (8, + 21, a static equivalent normal edge reaction. 

S nt = (Nnt + $, , a static equivalent to tangential edge reaction. 
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If we denote the four quantities V , N , Snt, Mn by Rl, R2, R3, R4 and 
n n 

refer to them as boundary condition "residuals", we note the boundary condi- 

tions are met if, RI = 0 along the contour C. 

Next consider possible "line loads" applied to the complete sphere along 

the contour, which loads are to assist in meeting the boundary conditions, 

Referring to the above sketch, let: 

L1' L2, 3 
L be rectangular components of force (per unit length) which are 

respectively normal to the surface, tangential to the curve C, 

and in the third orthogonal direction. 

L4 be a force couple (per unit length) with axis tangential to 

the curve C. 

If we introduce a reference polar axis for the complete sphere, surface 

points may be located by the polar co&?Mnates @ and 0, the latitudinal and 

meridinal angles, respectively, (# measured from the pole), 

Let two three-dimensional vectors Sol' uo (Greek indices for three dimen- 

sions) be defined such that: 

q1, 929 Q3 are components of the applied surface force (per unit surface 

area) in normal direction, tangential to the meridian circle, 
and tangential to the latittie circle, respectively. 

9 %?I 3 u are the displacement components of the shell middle surface (in 

the normal, and two tangential directions, respectively). 
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Next we define the Green's functions: ' 

Acy8(#,e,q6) as the displacement ua (at point #,e) due to an applied force 

vector p 
B 

(at point,?,@ whose components are each unity. 

Bie(s,~,~) as the boundary condition residuals RI (at point s on the 
contour C) due the same applied force vector pP(at z,e') 

Cij(S,t) as the boundary condition residuals Ri (at point g on contour C) 
due to an applied line load system Kj (at point 4 on contour C) 

whose components are each unity. 

DCYj(#,e,t) as the displacement uo (at point #,9) due to the same line load 
system Kj (at point t.). 

Then for the applied force, 
($3 

acting over the surface element do, we may 

express the resulting contribution to the boundary condition residuals: 

3 dRi = c 73 du Bip 
(3=1 

or employing the s-tion convention (for repeated indices): 

dRi(t) = 9~ BiF! Q (a function of 4). 

Similarly, for an applied force system, Li acting over the arc length ds 

(of the contour C), the contribution to residuals is: 

dRi = Lj Cij ds 

Thus through superposition, the requirement that residuals vanish along 

contour C is met if, 

ss B ig 
s 

(t,S,B> 9~ (~,'i> da + S 
C 

Cij (t,S> Lj(S) ds = 0 (la> 
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In a similar fashion, the contributions to displacement, from the 

applied surface load Q (acting on do) and the line load Li (acting over ds) 

are respectively:, 

ducY =*BAtxeclrJ ; d”a =L D 
j 013 

ds 

and hence, the displacement at surface point (#,g) is: 

ss AaBb,e,;,i) q&&‘e> do + [ “c D~j(Z,e,S) Lj(S) ds = Ua(pI,8) (24 
S 

The formulation of the problem is completed with the further require- 

ment that 

qu (he> = + V&WI) (3b) 

where X is the eigenvalue of the problem. 

Were the boundary conditions specified entirely in terms of displace- 

ments, as in a fixed edge support, then w, v, u and E must vanish along 
dn 

the contour C. The formulation would remain the Same except that the bound- 

dary condition residuals, RI, would in this case be defined as 

R1 
=w, R2=v, 

R3 
=u , R4 = 5 

where: 

w, v, u are displacement components along the contour. 

dw 
zi is the normal derivative of w along the contour. 

In a similar fashion, other boundary conditions (for exaiuple: simply 

supported or elastically supported edges) may guide the specific nature of 

the formulation. 
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APPENDIX II SPHERICAL GECMETRY 

In the development of the Green's functions (discussed under 

Mechanics of Solution in the report text), use is made of two surface 
coordinate systems, one fixed in space, the other oriented with respect 

to a given stimulus and a given response point. To develope geometric 

relationships between these two coordinate systems and the transformation 
relationships for surface vectors (or tensors), a third coordinate 
system is introduced: a rectangular cartesian coordinate system with 
an origin at the center of the sphere , y-axis along the fixed polar 

axis and x-axis in the fixed meridianal plane, 9 = 0. 
As the Fundamental Problems I and II, which form the basis for 

the Green's functions, are expressed in terms of the relative coordinate 

system and in particular the polar angle 7 in that system, an 

expression is required for 7. 
Let point P be the stimulus point and have coordinates, p , s 

in the fixed system. Also let point 2 be the response point having 
coordinates cp , 8 in the fixed system. In the relative system 
P is at the pole and $ is the polar angle of Q. For convenience, we 
assume a unit sphere. Then the position vectors of P and Q in 
the r.c.c. system have components: 

$= sin* cos S i+ cos & T+ sin 7 sin 92 
$= sin 6 cos 0 -i‘+ cos 6 ,f+ sin qsin 8 $ 

respectively. 
The angle between these vectors is also the polar angle $ in 

the relative system. Hence, 

(lc) 
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Using equations (lc) and (2~) in concert, then $ and its functions 

may be found. 

At point P , stimuli may appear as either scalar or vector 

(two dimensional) quantities. The unit normal load is a scalar while 

the tangential force has two components, as does the unit moment about 

a tangential axis. The Green's function stimuli are in terms of the 

fixed coordinate system with positive tangential directions (1) toward 

the pole and (2) in the increasing 0 direction. To transform these 

vector quantities from the fixed system to the relative system so 

that the Fundamental Problem solutions may be applied, the angle y 

(between the tangent at P toward the fixed pole 0 and the tangent 

at P toward Q ) is required. 

A unit tangent vector at P towards 0 is given by: 
; 

PT (k 
= A- cos cpp" ) cscq 

as may be verified from vector addition and reference to the sketch 
(3c) 

below. 

In a similar fashion the unit tangent vector at p toward Q is: 

7 
Pq =G- cox $ p' ) csc 3 (4c) 

The inner product of these two vectors then yields: 
J 

4 cov=tp+ pq and sin y = Jr-i& 

Then also, 

(5c) 

- --4 
cos 6 = t .T 

s+ Q 
and sin 6 =,./z (64 

where: 

Aqg = (k - ; .osq; ) csc cp 
t == <i?- cos $ $) csc 3 
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In the relative coordinate system let the positive senses for 

vector components be (1) towards Q and (2) in the direction defined 

by the unit vector $ x ;ipq. Then it may be verified that the 

transformation law is: 

S;= a.. S. 
1J J 

(summation convention) 

where 
S; are stimuli components in the relative system 
Sj are the stimuli components in the fixed system 

a ij sin q I 
cos y 

-i 

At point P ; responses may be either scalar, vector, or second 

order tensor quantities (two dimensional). (An example of the latter 

is the moment tensor, M ij.) In th e relative coordinate system the 

positive senses for components is (1) towards P and (2) in the direction 
defined by the unit vector > x t' 

Q' 
Then the transformation laws become: 

Ti = b.. T.' 
1J J 

T ij = b..b 
1~ jm Tkm' 

where 

Ti, T.. 
1J 

are first and second order response tensors in the 

fixed system 

T.', Th' 
J 

are the same tensors in the relative system 

b - ij 

i 

cos 6 sin 6 

-sin 6 I cos 6 

Rnploying transformation relations (7~) and (8~) the Green's 

functions may be expressed directl.y in terms of solutions of the 

FIuC&mental Problems I and II. 
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